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Abstract

Exposure to traffic-related air pollutants (TRAP) remains a key public health issue, and improved 

exposure measures are needed to support health impact and epidemiologic studies and inform 

regulatory responses. The recently developed Research LINE source model (RLINE), a Gaussian 

line source dispersion model, has been used in several epidemiologic studies of TRAP exposure, 

but evaluations of RLINE's performance in such applications have been limited. This study 

provides an operational evaluation of RLINE in which predictions of NOx, CO and PM2.5 are 

compared to observations at air quality monitoring stations located near high traffic roads in 

Detroit, MI. For CO and NOx, model performance was best at sites close to major roads, during 

downwind conditions, during weekdays, and during certain seasons. For PM2.5, the ability to 

discern local and particularly the traffic-related portion was limited, a result of high background 

levels, the sparseness of the monitoring network, and large uncertainties for certain processes (e.g., 

formation of secondary aerosols) and non-mobile sources (e.g., area, fugitive). Overall, RLINE's 

performance in near-road environments suggests its usefulness for estimating spatially- and 

temporally-resolved exposures. The study highlights considerations relevant to health impact and 

epidemiologic applications, including the importance of selecting appropriate pollutants, using 

appropriate monitoring approaches, considering prevailing wind directions during study design, 

and accounting for uncertainty.
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1. Introduction

While controls on vehicle emissions have helped to moderate effects of increasing traffic and 

urbanization, exposure to traffic-related air pollutants (TRAP) remains a public health 

concern due to the many adverse health outcomes associated with exposure (Anderson et al., 

2011; Fang et al., 2015; IARC Working Group on the Evaluation of Carcinogenic Risks to 

Humans, 2014; Health Effects Institute (HEI), 2010), and because many people live and 
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work near major roads, e.g., 4% of the US population (11.3 million persons) live within 150 

m of a major highway, and up to 40% in cities (Health Effects Institute (HEI), 2010; 

Boehmer et al., 2013). The association between TRAP exposure and adverse health 

outcomes revealed by health impact and epidemiologic studies plays a critical role in 

developing air quality policies and standards. However, exposure assessment remains a 

recognized weakness of these studies (Batterman et al., 2014). The most accurate approach 

for determining exposures, personal measurements, is rarely feasible or cost-effective given 

the number of subjects required and the cost, burden and other limitations of the sampling 

equipment. Ambient air quality monitoring can be used, particularly in time series studies, 

however, conventional monitoring networks are spatially too sparse to capture small-scale 

variation or spatial gradients, e.g., the elevated concentrations found near large roadways 

(Zhang and Batterman, 2013). Surrogate measures, such as the proximity to roads and traffic 

intensity, only indirectly indicate concentrations and have other limitations (Batterman et al., 

2014). Spatially- and temporally-resolved exposures are especially needed for urban-scale 

cohort and panel studies (Dionisio et al., 2015).

Combined modeled frameworks, which can include pollutant emission and physically-based 

dispersion models can provide predictions of near-road exposures at high spatial and 

temporal resolution, and new components of these combined frameworks can be applied 

where appropriate to provide potential enhancements to modeled estimates. The recently-

developed Research LINE source dispersion model (RLINE) (Snyder et al., 2013), designed 

specifically for near-road applications, has been used to estimate TRAP exposure in several 

recent epidemiologic studies (Batterman et al., 2015a; Zhai et al., 2016; Pachón et al., 2016). 

However, applications of dispersion models require extensive input data, and prediction 

accuracy and uncertainty in urban settings are not well characterized (Jerrett et al., 2005). 

Performance evaluations of the RLINE model (Snyder et al., 2013; Venkatram et al., 2013; 

Heist et al., 2013; Chang et al., 2015) show generally comparable results as other line source 

models that simulate dispersion from on-road traffic emissions (Rao et al., 1980; Oettl et al., 

2001; Levitin et al., 2005; Ganguly and Broderick, 2008), however, these evaluations have 

limitations with respect to epidemiologic and other applications. For example, they often 

lack evaluations of daily (and sometimes annual) average concentrations of TRAP, and they 

rarely are performed at the urban scale needed for population-level observations of health 

outcomes. Instead, most evaluations have examined hourly average concentrations, used 

experimental tracer gases that do not undergo chemical and physical transformations, and 

examined small (< 1 km2) and simplified domains that contain few sources (Heist et al., 

2013; Chang et al., 2015; Isakov et al., 2014). (Datasets used in earlier evaluation studies are 

shown in Table S1.) While providing valuable diagnostic information that can help improve 

models, these evaluations do not represent the complexity and scale of urban settings, which 

can span large and diverse areas with many emission sources. The studies that have 

compared RLINE predictions to observations of TRAPs have other limitations, e.g., the use 

of short monitoring periods, single pollutants (Snyder et al., 2013; Patton et al., 2017), 

examination of only annual average concentrations (Zhai et al., 2016), and limited 

discussions of model performance and study methodology (Pachón et al., 2016). Further, 

performance has not been evaluated with respect to exposure-relevant factors (e.g., 
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meterological and emission variability seen by day-of-week and season) that could alter 

results and lead to exposure measurement errors and misclassification.

This study performs an operational evaluation of a combined modeling system using the 

RLINE and AERMOD (Cimorelli et al., 2005) dispersion models. The evaluation focuses on 

daily exposure measures and the traffic-related portion modeled by RLINE, in an application 

relevant to many epidemiologic and health impact studies. We utilize routine observations of 

pollutant concentrations, emissions, meteorology and other variables with the goal of 

characterizing prediction uncertainties and limitations of models for particular applications, 

and include statistical and graphical analyses to determine whether model estimates agree 

with observations in an overall sense (Dennis et al., 2010). Here, daily average 

concentrations of nitrogen oxides (NOx), carbon monoxide (CO), and fine particulate matter 

(PM2.5) measured at sites across Detroit, MI for the 2011 to 2014 period are compared to 

predictions from RLINE and AERMOD dispersion models, for line and point sources 

respectively. Performance is evaluated by pollutant, site, wind direction, meteorological 

condition, averaging time and other factors. We discuss implications regarding the use of 

RLINE in epidemiologic studies.

2. Methods

2.1. Monitoring data

The study domain, the urban and industrial Detroit area in southeast Michigan, contains five 

Air Quality System (AQS) monitoring stations located near high traffic roads (Fig. 1; Table 

1). The “suburban” or Allen Park site (AQS ID 261630001) is 190 m southeast of Interstate 

75 (I-75), which has an annual average daily traffic (AADT) volume of 89,800 (Michigan 

Department of Transportation (MDOT), 2014). This site is shielded on one side by a row of 

trees, and a power substation and a truck park border the site. The surrounding area is mostly 

residential with single family homes. The “industrial” or Dearborn site (AQS ID 261631008) 

is northeast of the Marathon Petroleum refinery in southwest Detroit and 150 m northwest of 

I-75 (AADT = 105,800). The “schools” or East 7 Mile site (AQS ID 261630019) is located 

in a small park shared by three schools, 390 m east of MI-97 (AADT = 9500) and 2000 m 

south of MI-102 (West 8 Mile Road). Lastly, the “near-road” and “urban” Eliza Howell sites 

(AQS IDs 261630093 and 261630094, respectively) are 10 and 100 m north of I-96 (AADT 

= 152,000) with minimal obstructions.

Air quality data for 2011 to 2014 were obtained from the US EPA AQS Datamart (US 

Environmental Protection Agency (US EPA), 2016a). Over the study period, several types of 

monitoring methods/instruments were used that differed in sensitivity and possibly other 

characteristics although all used federal reference methods (FRM) or equivalent (US 

Environmental Protection Agency (US EPA), 2017). Hourly concentrations of NOx were 

measured at three sites, CO at four, and PM2.5 at three. NOx at the near-road and urban sites 

was monitored using gas-phase chemiluminescence and Ecotech 9814B monitors 

(“IGpCHEM”) from October 2011 through December 2013, and using Thermo 

Environmental Instruments Model 42C instrumental chemiluminescence (“ICHEM”) in 

2014. NOx at the schools site was measured using a Thermo Environmental Instruments 

Model 42C and by ICHEM. CO was monitored at the near-road site by instrumental gas 
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filter correlation using an Ecotech 9830 monitor (“EC9830T”) from October through 

December of 2011, and a Thermo Model 48C monitor using instrumental non-dispersive 

infrared (“INDiI”) through 2014. CO at the urban site was measured using a Thermo 

Environmental Instruments Model 48C and by INDiI, and at the suburban site by an 

instrumental gas filter correlation analyzer (“IGFC”). CO at the industrial site was measured 

using a Teledyne API T300 using IGFC. PM2.5 at the schools and suburban sites was 

monitored as 24-h averages using the FRM and as 1-hr averages at the suburban site using a 

tapered element oscillating microbalance (TEOM). PM2.5 sites and methods are shown in 

Supplemental Information (SI) Table S2.

Data processing and quality checks included the following: NO and NO2 measurements in 

ppb were converted to NOx concentrations using the average conversion rate (1 μg m−3 NOx 

= 0.5495 ppb NOx). Only the suburban and schools sites reported PM2.5 blanks, thus blank 

corrections were not used. Negative observations were set to zero. Measurements below 

detection limits (DLs) were omitted in most analyses, or set to ½ DL in a sensitivity 

analysis. Daily averages were calculated from hourly NOx, CO and PM2.5 measurements.

2.2. Meteorological data

For each AQS site, a unique meteorological dataset was created that combined on-site 

measurements with other parameters measured at nearby weather stations. Each AQS site 

recorded wind speed, wind direction, temperature and pressure. Additional meteorological 

parameters needed for dispersion modeling (surface friction velocity, convective velocity 

scale and surface roughness) were calculated from data collected at the Detroit City Airport 

(DET) National Weather Service station (National Weather Service (NWS), 2016) (see Fig. 

S1 for the DET wind rose) and the Pontiac, MI radiosonde site (National Oceanic and 

Atmospheric Administration (NOAA), 2016). Quality-checked site-specific hourly 

meteorological input files for 2011 through 2014 was produced using AERMET (Cimorelli 

et al., 2005). RLINE utilizes a subset of the variables produced: sensible heat flux, surface 

friction velocity, convective velocity, convective and stable planetary boundary layer heights, 

Monin-Obukhov length, surface roughness (back-calculated from AERMET files provided 

by MDEQ), wind speed, and wind direction. Given RLINE's limited error checking, hours 

missing any of these parameters, with the exception of convective velocity (limited by a 

lower bound of zero), were excluded. Excluded hours represented 6–15% of hours, 

depending on site.

2.3. On-road mobile source modeling

Concentrations from on-road mobile sources were predicted using a spatially- and 

temporally-resolved link-based emission inventory and the RLINE model. A road network 

consisting of 9701 links and AADT volumes for 2010 (Snyder et al., 2014; Michigan 

Department of Transportation (MDOT), 2014) was updated using current AADT and 

commercial AADT (CAADT) volumes reported in the Michigan Trunkline Highway System 

(which includes interstates, US and state highways) (Michigan Department of Transportation 

(MDOT), 2014) and a custom mapping/linking algorithm (see SI). Percentage changes in 

AADT and the CAADT fraction were applied to matched links' 2010 AADT, and the 

estimated CAADT volumes were subtracted from AADT to derive updated non-commercial 
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volumes by link and year. For unmatched links, 2010 volumes were used, which should not 

significantly affect results since vehicle miles traveled (VMT) on these roads was modest 

(below half of the Trunkline roads). The fleet mix on each link was derived using AADT and 

CAADT estimates, short-term counts (usually 2–3 days of data, excluding ramps and loop 

measurements), and permanent traffic recorders (PTRs) in the Traffic Monitoring 

Information System (TMIS; Table S3) (Michigan Department of Transportation (MDOT), 

2016). Because count data were sparse, especially on minor roads, fleet mix was estimated 

by the road's National Function Class (NFC). NFC 12 and 19 links (without traffic count 

data) were assigned to NFC 14 and 17, respectively (Snyder et al., 2014). Hourly data using 

the 13 Federal Highway Administration (FHWA) classes were averaged across days, road 

direction and stations, and mapped to the 8 Highway Performance Monitoring System 

(HMPS) classes (Decker et al., 1996). The average HMPS-by-NFC volume fractions were 

allocated to commercial and non-commercial traffic (Table S4), normalized and weighted by 

average commercial traffic fractions by NFC from the final dataset (Table S5). Hourly 

commercial and non-commercial volumes for each link were estimated using hour-of-day, 

day-of-week and monthly temporal allocation factors (TAFs) derived for Detroit area roads 

(Batterman et al., 2015b). Hourly commercial and non-commercial emission factors for each 

NFC and speed bin (speeds were assigned to morning and evening rush hours, afternoon and 

evening periods) were calculated for each pollutant. Finally, link emissions were calculated 

as the product of link-specific volume with the speed-, month-, temperature- and vehicle 

type-specific emission factor (described next).

Emission factors (g vehicle−1 mile−1) were generated using the Motor Vehicle Emission 

Simulator (MOVES) version 2014a (US Environmental Protection Agency (US EPA), 2015) 

and 2015 inputs for the Wayne, Macomb and Oakland Counties (the most populated local 

areas) provided by the Southeast Michigan Council of Governments. Other MOVES inputs 

included monthly average local temperatures in 11 bins (0–100 °F in 10° increments) 

(Snyder et al., 2014)) and the default barometric pressure, which was similar to local 

conditions (Southeast Michigan Council of Governments (SEMCOG), 2011). Following 

previous work (Snyder et al., 2014), emission factors for running exhaust and running 

evaporative modes were calculated for CO, NOx, PM2.5 and PM2.5 precursors (evaporative 

hydrocarbon emissions), and for PM2.5 tire-wear and brake-wear emissions. Crankcase and 

other emissions were omitted to reduce computational time; these emissions are small 

compared to exhaust emissions. Again following previous work (Snyder et al., 2014), 

emission factors were consolidated within a pollutant type (e.g., tire and brake wear for 

PM2.5), vehicle types (MOVES sourceTypeIDs) were mapped to the HPMS vehicle classes 

(Table S6), and averages were calculated weighted by vehicle type counts and VMT fraction 

on major roads (AADT > 10,000, called “urban restricted” in MOVES) and NFC 11 and 12 

in the link network and minor roads (called “urban unrestricted” and NFCs 14, 16, 17 and 

19), and the number of weekday and weekend days (5 and 2, respectively). CO, NOx and 

PM2.5 emission factors were calculated by vehicle type, speed and ambient temperature.

A modified version of RLINE v1.2 was implemented. Recent updates to this model include 

minor changes to the horizontal and vertical dispersion formulae, and major changes to the 

numerical integration algorithm. We used RLINE's numerical integration method, an 

iteration limit of 1000, and an error limit of 0.001. The beta modules for roadside barrier and 
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depressed roadway algorithms were not used. Modifications taken to reduce run times and 

facilitate the large number of hours, links and receptors simulated included omitting 

calculations for receptor-link distances exceeding 4000 m (these concentrations were very 

small), using internal loops for multi-hour runs, pre-computing emission rates, and a more 

flexible and efficient input and output scheme.

2.4. Point source modeling

A point source inventory of CO, NOx and PM emissions in southeast Michigan (including 

Lenawee, Livingston, Macomb, Monroe, Oakland, Washtenaw and Wayne counties) was 

created for the years 2011–2014. We consolidated stack-level data in the National Emission 

Inventory (NEI) (US Environmental Protection Agency (US EPA), 2014) with facility and 

stack-level data in the Michigan Air Emission Reporting System (MAERS) (Michigan 

Department of Environmental Quality (MDEQ), 2014); emission data was available for 564 

facilities. Stacks were aggregated to the facility level by assigning emissions to the main 

stack. A subset of 179 facilities were selected based on the 100 highest emitting facilities for 

each pollutant). Of these, 58 mostly smaller sources had incomplete information and were 

excluded. Extensive quality checks, including comparisons between MAERS and the 2011 

NEI data, showed good agreement for facility-level emissions for CO and NOx (e.g., 

inventories agreed mostly within 5%). PM2.5 data showed larger discrepancies, e.g., 

differences between MAERS and NEI at 99 of 121 sources, and MAERS filterable 

emissions exceeded primary emissions (i.e., the sum of filterable and condensable PM2.5) at 

23 facilities. These discrepancies were resolved following a 3-step procedure (Dorn et al., 

2013): quality checking available data; trivial gap filling using available data; and then 

ranked “best-guess” estimates using, in sequence, data in an NEI year, primary emissions 

data converted directly using facility-specific SCC conversion factors, the median PM2.5 

emission estimate generated indirectly, and lastly, the PM2.5 estimate created by trivial gap-

filling of converted values. The final point source inventory contained 121 sources and 

represented over 90% of regional point source emissions (Table S7).

Pollutant concentrations from point sources were predicted using the inventory, the 

AERMOD dispersion model (View v8.1.0; AERMOD.exe v12345) (Cimorelli et al., 2005), 

and the preprocessed meteorological data described earlier. Sources in Detroit were 

classified as “urban” (Fig. S2) with a reference population of 106 and the default surface 

roughness (Michigan Department of Environmental Quality (MDEQ), 2015).

2.5. Background concentrations

The performance evaluation requires “background” concentrations, defined in this case as 

contributions from both regional sources (outside the modeled area) and local but 

unmodeled area and mobile sources. The background sources are not explicitly modeled 

because they are distant, too numerous or too difficult to simulate (Arunachalam et al., 

2014), or because data are incomplete. Therefore, background at each monitor was estimated 

by taking the monthly geometric mean of hourly differences between observations and 

predictions made during hours when each monitor was upwind of the nearest largest line 

source; similar methods have been used in recent work (Malby et al., 2013). Missing months 

were imputed by linear interpolation, and then leave-one-out nearest neighbor linear 
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regressions were performed to obtain a smoothed sequence of monthly background 

estimates at each monitor.

2.6. Evaluation approach and metrics

The operational evaluation, which was guided by previous RLINE evaluations (Snyder et al., 

2013; Venkatram et al., 2013; Heist et al., 2013) and the literature (Chang and Hanna, 2004; 

Hanna and Chang, 2012), compared observed and predicted concentrations using 24-h 

averages, an averaging period frequently used in epidemiologic and health impact studies. 

This period also is supported by previous evaluations suggesting that meteorological 

variability makes comparisons at the hourly level “almost fruitless” (Chang and Hanna, 

2004). Comparisons were made between observed values and the sum of background and 

predicted values. (We performed several diagnostic tests to ensure that our results were 

similar to those obtained when comparing the sum of predicted values to observed minus 

background values.) Analyses were conducted by pollutant, wind direction, monitoring site, 

season and day-of-week. Wind directions were defined for wind speeds exceeding 1ms−1, 

and monitoring sites were considered to be “downwind” for directions within ± 30° of 

perpendicular of the largest nearby road, and “parallel” for directions within ± 15° of 

parallel (Venkatram et al., 2013). Daily average downwind or parallel concentrations were 

calculated for those hours of each (calendar) day that met these conditions if at least 6 h of 

valid model-observation pairs were available. Periods with fewer than 5 valid days were not 

considered. Seasons were defined as “winter” (Dec., Jan., Feb.), “spring” (March, April, 

May), “summer” (June, July, Aug.), and “fall” (Sept., Oct., Nov.).

The statistical evaluation emphasized four metrics recommended in air quality model 

evaluation guidelines (Chang and Hanna, 2004; Hanna and Chang, 2012). (Formulas for the 

metrics are listed in Table S8.) The F2 statistic, the percentage of modeled values within a 

factor of 2 of observed values, shows over- and under-predictions and provides a measure of 

overall model performance. The Spearman correlation coefficient (RSP) assesses the 

similarity between ranked observations and predictions, and may be particularly appropriate 

for epidemiologic studies since it can indicate whether exposures are correctly ordered. The 

fractional bias (FB) shows the tendency to over- or under-predict, i.e., the likelihood of false 

positives (FBFP) or false negatives (FBFN). (Equal weight is given to each.) Lastly, the 

geometric variance VG indicates the irreducible (“systematic”) and reducible (“random”) 

errors. This metric can help identify conditions where performance potentially could be 

improved, i.e., the percentage of errors that are reducible (% reducible) is the ratio between 

the natural logarithm of the reducible component of VG and the total VG (the product of the 

systematic and random components). Suggested minimum performance criteria for air 

quality modeling are F2 ≥ 50%, mean bias ≤30%, and VG ≤ 1.6 (Chang and Hanna, 2004; 

Hanna and Chang, 2012).

3. Results

3.1. Background and unmodeled contribution

For NOx, most hourly measurements exceeded DLs (51–100%, depending on site), and 

background estimates generated fell into a narrow range (15–18 ppb; Table 2). For CO, 
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observations frequently fell below the DL for the less sensitive instruments (IGFC and 

INDiI), which yielded relatively high background estimates (averaging 519–671 ppb); 

background levels were lower (128 ppb) for the more sensitive instrument (EC9830T). 

Because the background estimates reflected the instrument's DL, datasets were not pooled 

across sites or instruments. For PM2.5, background estimates averaged 8.8 μg m−3 at the 

schools and suburban sites, equal to 88–92% of observed levels (9.5 and 10 μg m−3, 

respectively; Table S9), and day-to-day variability was significant. Predicted contributions 

from point and on-road mobile sources were small (averaging from 0.1 to 0.8 μg m−3), and 

including these sources in daily background estimates did not increase the correlation 

between observed and estimated background levels. Thus, the performance evaluation for 

PM2.5 was not considered informative, a function of the dominance of regional sources and 

the small signal remaining from local sources, the gaps and uncertainties of the PM2.5 

emission inventory, the absence of chemical transformations in RLINE, and the paucity of 

near-road PM2.5 monitoring data.

3.2. Performance by site

For NOx, daily mean predictions (20–38 ppb) were similar to observations (23–48 ppb; 

Table 2). Performance tended to decrease with distance from the roadway, e.g., RSP was 

from 0.58 to 0.74 at the near-road site (10 m from I-96), 0.57 to 0.58 at the urban site (100 m 

from I-96), and 0.32 at the schools site (350 m from MI-97). The near-road site using the 

IGpCHEM monitor had the highest RSP (Fig. 2), the lowest % reducible VG, and the highest 

mean model-to-background ratio. However, this case had the highest FB, mainly because the 

IGpCHEM measurements (average of 48 ppb) exceeded the ICHEM measurements (37 

ppb), while predictions during these periods were similar (38 and 37 ppb, respectively). 

Performance at other sites varied: the schools site was under-predicted; the suburban, urban 

and industrial sites were over-predicted; and reducible errors at all four sites exceeded 

systematic errors, suggesting that improvements in model inputs or parameterization could 

improve model performance (Additional results are shown in Tables S10-11. These tables 

are shown graphically in Fig. S3 A-D.).

For CO, daily predictions (180–320 ppb) generally fell below observed levels (479–673 

ppb). As seen for NOx, performance tended to decrease with distance from the roadway, 

e.g., RSP was 0.45–0.89 at the near-road site, 0.17 at the urban site, and 0.21 at the suburban 

site. Despite its proximity to I-75 (150 m), the industrial site had RSP near zero, possibly a 

result of that monitor's high DL that falsely elevated the background estimates. (The 

estimated background averaged 91% of measurements.) This site was also adjacent to active 

rail lines and large industrial emission sources. Ranks of mean predictions followed 

observations except for the suburban and near-road EC9830T samplers; at the suburban site, 

predictions fell below observations, probably because this site was far from known CO 

sources, and lower observations were recorded at the near-road EC9830T sampler (reflecting 

the lower DL of the EC9830T instrument), which influenced background estimates at this 

site. As for NOx, the near-road site (with the EC9830T instrument) had the highest RSP (Fig. 

2) and again, this case had the lowest ratio of reducible to overall VG, the highest mean 

model-to-background ratio, but the highest FB. Patterns at the other sites were similar to 
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those seen for NOx: daily averages at the schools site were under-predicted; suburban, urban 

and industrial sites were over-predicted; and reducible errors exceeded systematic errors.

3.3. Performance by wind direction

For NOx, downwind conditions gave higher F2 (except for one case) and higher RSP (0.30–

0.64) than parallel conditions (Table 3). The exception was the near-road site using the 

ICHEM monitor, but both downwind and parallel winds had high F2 (≥ 90%) and large and 

reducible errors (VG ≥ 1.16, % reducible ≥ 99%), indicating the potential to improve model 

parameterization. Other performance metrics gave mixed results, e.g., at the urban site 

during downwind periods, FB was slightly lower, VG was unchanged, and the % reducible 

error was lower (mainly with the ICHEM monitor). Despite some inconsistencies, the F2 

and RSP metrics results indicated better performance during downwind as compared to 

parallel wind conditions.

Performance for CO also was generally better during downwind periods, albeit less 

conclusively than for NOx. F2 exceeded 92% at all sites. The near-road and urban sites had 

higher RSP (0.29–0.83) during downwind periods compared to parallel winds (−0.07 to 

0.60). (Other sites had insufficient data for robust evaluations.) At the near-road site with the 

EC9830T monitor, which had the highest RSP, downwind conditions increased FB and 

decreased F2, but the fraction of reducible to overall errors was higher. Similar results were 

seen at the urban site with the INDiI monitor. While limited by high DLs, the CO dataset 

again indicates better performance during downwind conditions.

3.4. Performance by day-of-week

For NOx, performance on weekdays generally was better than on Saturdays and Sundays 

(Table 4): weekdays gave higher F2 in all but one case (near-road site with the IGpCHEM 

monitor), although F2 exceeded 95%, and weekdays also had higher RSP (although the 

urban site with the ICHEM monitor had comparable RSP = 0.59 on both weekends and 

Saturdays, though still higher than on Sunday when RSP = 0.46). At the near-road site with 

the IGpCHEM monitor, RSP was high and comparable on weekdays, Saturdays and Sundays 

(0.75, 0.73 and 0.72, respectively), and weekdays had more under-predictions. Given that the 

reducible VG on weekdays was low at this site, however, the overall conclusion of better 

performance on weekdays is unchanged.

For CO, the evaluation by day-type was hampered by data limitations, but weekday 

performance appeared better. F2 exceeded 92% at all sites. The near-road site had the 

highest RSP on weekends (0.47 and 0.91 for INDiI and EC9830T samplers, respectively. The 

suburban site had higher RSP for Saturdays than weekdays, but the sample size was small 

(weekend n = 7). At the urban site, weekdays and Saturdays had higher RSP (0.17 and 0.23) 

than Sundays (0.01), but all correlations were low. The other performance metrics gave 

mixed results.

3.5. Performance by season

For NOx, seasonal performance trends varied by site and method, however, slightly better 

performance was suggested during winter (Table 5). For example, the near-road site in 
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winter had the highest RSP (both instruments), the highest F2 (ICHEM instrument, and 

nearly so with the IGpCHEM instrument), and the lowest relative reducible error. The urban 

site had the highest RSP (IGpCHEM) in winter. However, trends differed at other sites, e.g., 

RSP was highest in summer at the schools site and highest in spring at the urban site 

(ICHEM monitor), and VG was not lowest in winter at any site.

Seasonal trends for CO were inconsistent, although some measures showed better 

performance in winter. RSP was highest during winter at the near-road (both monitors) and 

industrial sites, however, RSP was highest in spring at the urban site and negative during 

winter. F2 was uniformly high (≥91% and most values approached 100%). Data limitations 

restrict the reliability of the CO trends.

4. Discussion

The operational evaluation characterized dispersion modeling performance for daily average 

concentrations of NOx and CO at multiple sites in Detroit over a four-year period. The 

performance metrics often, but not always, gave consistent information, and generally met 

criteria laid out in evaluation guidelines (Chang and Hanna, 2004; Hanna and Chang, 2012). 

Some interpretations can be complex, e.g., if RSP is low, then comparisons of FB and VG 

across sites may provide little information. Most downwind NOx and CO predictions were 

within a factor of two of observations (F2 > 90%), and correlation coefficients were 

moderate to high for NOx (0.32–0.74), but variable for CO (0–0.89). Agreement between 

observed and predicted concentrations improved when monitors were downwind of major 

roads, as shown by high RSP, low FB (−0.19 to 0.34 for NOx; −0.17 to 0.50 for CO), and 

somewhat consistent and positive FB at the best-performing sites. We found over-prediction 

and increased scatter with low NOx observations and parallel winds, high contributions from 

on-road sources to CO levels at the near-road monitors, and uniform background levels of 

NOx (15–18 ppb) across Detroit.

Dispersion models like RLINE are expected to perform best at unobstructed sites that are 

close to roads since the modeled on-road sources will contribute a larger fraction of 

observed concentrations and since these models do not explicitly model flows around 

buildings and other features. (RLINE simulates near-source dispersion using a general 

surface roughness parameter and dispersion parameters.) For NOx and CO, two pollutants 

emitted primarily from traffic-related sources in urban areas, performance improved with 

proximity to major roads, and the best performance in Detroit was attained at the Eliza 

Howell near-road site located very close to the busy I-96 freeway.

Performance was generally better during downwind as compared to parallel wind conditions. 

Both observed and predicted concentrations tended to be higher under downwind conditions, 

thus, the increased agreement may reflect the greater signal from local (on-road) emission 

sources. (Plume models can produce the highest concentrations at near-road receptors with 

winds that are parallel or near-parallel to the road, although this was never observed in the 

daily averages in Detroit.)
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Performance was better on weekdays as compared to weekends, possibly because the more 

regular traffic volume and fleet mix patterns on weekdays are better represented by temporal 

allocation factors (Batterman et al., 2015b). In contrast, traffic patterns on weekends, 

especially on Sundays, are more variable. The higher traffic volumes and stop-and-go 

congestion on weekdays might increase emissions, and the lower speeds and greater vehicle 

density might affect near-road turbulence and dispersion, thus increasing concentrations. 

The underprediction on weekdays might result from these factors, and possibly is due to a 

higher diesel fraction in the fleet mix than predicted. Such speculations might be examined 

using diagnostic (rather than operational) evaluations that focus on rush hour periods.

Model performance appeared slightly better in winter although results varied by site and 

method. Potentially important seasonal changes in Detroit include: shifts in prevailing wind 

directions, which alter the likelihood that a monitoring site will be downwind; changes in the 

frequency of stability regimes; large temperature swings, which alter MOVES emission 

factors (impacts on NOx are complex, Table S9) (Chan et al., 2013); changes in temperature 

and the atmospheric composition (especially OH−) that can alter pollutant lifetime and fate; 

and changes in regional pollutants (particularly for PM2.5). Only some of these processes are 

captured in dispersion models.

While of significant interest, no evaluation for PM2.5 is presented as results were not 

informative. This largely results from the limited ability to discern PM2.5 from local sources 

given the strength of background and regional sources of PM2.5, and the lack of spatially- 

and temporally-resolved emissions data for area and non-road mobile emissions. Area and 

non-road emissions of PM2.5 can be substantial, e.g., modeled on-road mobile sources 

constituted 48% of NOx and 54% of CO emissions, but only 21% of PM2.5 emissions (Table 

6). Other studies have noted very high background concentrations of PM2.5 (> 70%) in 

Sacramento and London (Chen et al., 2009). Diagnostic evaluations at near-road sites 

measuring PM-related pollutants that are more specific to TRAPs, e.g., black carbon and 

ultrafine PM for combustion products, and other markers for tire, road, and brake wear, 

might help indicate some of the factors affecting model performance.

4.1. Comparison to literature

Many of our findings using RLINE are consistent with prior applications (e.g., in Detroit), 

and diagnostic evaluations using tracer gases (e.g., SF6). For Detroit (all-direction) hourly 

NOx at the schools site, an earlier study found a mean bias of 30% and F2 was 62% (Isakov 

et al., 2014); and for Detroit downwind near-road NOx and CO, F2 was 100% (Chang et al., 

2015). For downwind hourly near-road NO data, F2 was 93% and the geometric mean (MG) 

was 1.12 (Snyder et al., 2013). Also similar to previous work, we found positive FB at the 

near road site, and over-prediction and increased scatter at low NOx concentrations (Snyder 

et al., 2013; Venkatram et al., 2013; Heist et al., 2013). Our estimate of the ratio of the 

average on-road to background CO levels at the near-road site (1.46 at the more sensitive 

monitor) is similar to an earlier value for Detroit (Isakov et al., 2014). Finally, similar 

background concentrations of NOx across Detroit have been reported (Isakov et al., 2014). 

Compared to studies using tracer gases, results are also comparable. For example, downwind 

3-h averages of SF6 at near-road sites in Sacramento, California showed F2 > 80% and MG 
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was 1.18 (Snyder et al., 2013); using this same dataset, another study obtained F2 > 78% 

(Heist et al., 2013). For downwind and hourly SF6 gas data collected in rural Idaho, F2 was 

75–100% (Venkatram et al., 2013; Heist et al., 2013). Using near-road and downwind SF6 

measurements, FB was 0.05 and NMSE was 0.34 (Heist et al., 2013).

In contrast to earlier work, we did not show significant over-prediction with parallel winds 

(Snyder et al., 2013) or downwind peaks (Venkatram et al., 2013), and our normalized mean 

square error estimates were smaller than those in a recent RLINE evaluation (Heist et al., 

2013). We estimated that background sources were responsible for 70–90% of NOx at the 

schools site, compared to approximately 50% estimated using hourly data (Isakov et al., 

2014). These differences likely arose from our estimation of background and point sources 

and the use of daily averages.

Operational evaluations should be distinguished from diagnostic, dynamic and probabilistic 

evaluations. Comparisons to the previous RLINE evaluations, which were mostly diagnostic 

in nature, are limited by several factors. First, we examined daily concentrations, which are 

relevant to many health-related applications. Second, we did not evaluate performance as a 

function of meteorological conditions. Lower performance and over-prediction has been 

reported during stable periods (Snyder et al., 2013; Venkatram et al., 2013; Heist et al., 

2013). Third, performance during upwind periods was not evaluated (measurements during 

these periods were used to estimate background); prior work shows over-prediction and 

increased scatter at upwind receptors (Snyder et al., 2013; Heist et al., 2013). Fourth, our 

large scale and multiyear urban application used data from a sparse (though typical) air 

quality monitoring network, and the ability to assess spatial performance was limited. In 

comparison, most other studies used tracer gases, a higher density of monitoring sites, few 

sources, a small study domain (< 1 km2), and short study periods.

4.2. Implications of varying performance

Dispersion models can be useful in developing exposure estimates of TRAP in health-related 

studies owing to their ability (given requisite data) to provide estimates with high spatial and 

temporal resolution. However, it is important to account for model performance and 

exposure measurement errors, that is, differences between the measured (or predicted) 

exposure compared to the underlying true exposure, or exposure misclassification, the 

analogous term for a categorical exposure variable. These errors may vary spatially or 

temporally, and they may differentially affect different groups of study participants. 

Exposure measurement error can lead to incorrect inferences in health impact and 

epidemiologic studies, specifically, biased and/or imprecisely estimated effect coefficients 

that may be serious enough to invalidate inferences regarding the effect of pollution on 

health (Sheppard et al., 2012).

The operational evaluation suggested that model performance is best at near-road sites (e.g., 

within 10–100 m from the road) and that uncertainty increases with distance from roadways. 

RLINE represented much of the day-to-day variation observed in daily average 

concentrations, suggesting that dispersion modeling can provide near-road (and potentially 

on-road exposures) predictions with good fidelity: this is important since many people live 

or work near roads where TRAP concentrations are highest (Health Effects Institute (HEI), 
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2010). While these results may be driven by the ability to discern contributions from local 

emission sources, dispersion model performance is likely to degrade with distance in urban 

settings for several reasons (Jerrett et al., 2005), e.g., shifts in wind fields, the presence of 

unknown or unmodeled sources (including other local roads), atmospheric transformation, 

and other unmodeled processes. Thus, at farther distances, daily fluctuations in 

concentrations may be less accurately estimated. This may increase the likelihood of errors 

from dispersion model-based exposure estimates if study participants are exposed over a 

range of distances from major roads. Such studies might benefit from weighting exposure 

estimates by their uncertainties.

A second concern is the effect of wind direction relative to the orientation of (major) roads 

and locations of study participants. Dispersion models perform best at downwind receptors, 

i.e., when winds are approximately perpendicular to the road's orientation. Correlation 

between the prevailing wind direction(s), road alignment(s) and study participant locations 

might yield differential errors. For example, in Detroit, prevailing winds come from the west 

and southwest (Fig. S1 shows wind roses at two local airports). Thus, model performance 

will be best for roads with north-south and northwest-southeast alignments with study 

participants on the downwind side, and poorer for roads that are aligned with the prevailing 

wind directions or with participants in upwind locations. These errors were investigated in 

Detroit by identifying the nearest (within 150 m) major road (AADT > 10,000) for a random 

sample of residences (n = 4000). Most roads are aligned on a north-south or east-west axis, 

thus directions from a residence to the nearest major road are mainly north and south (Fig. 

S4). Based on prevailing winds and the largest roads, individuals living downwind are east 

of north-south roads (e.g., M-10, M-39, I-75), “upwind” individuals live on west of the same 

roads, and individuals living south or north of east-west roads (e.g., I-96, I-94) will often 

experience parallel winds. Even if all individuals in a study lived at similar distances and/or 

had similar TRAP exposure, upwind and parallel groups have an increased likelihood of 

exposure measurement errors. In general, population patterns and the importance of 

directional effects will depend on many factors, e.g., demographic clustering (e.g., of 

residences, schools, workplaces) (Fessenden and Roberts, 2011; Cable, 2013), geographic 

boundaries (mountains, coastlines), economic (real estate) and administrative (municipal 

boundaries) factors. Some concerns might be addressed by selecting appropriate areas or, 

again, by using weights to account for prediction uncertainty.

Other implications for health or epidemiologic studies arise from the day-of-week variation 

in model performance and the reliability of time-activity data needed to assign exposures. 

Consider a statistical model associating health outcomes with the prior day's exposure, e.g., 

outcomes on Sundays and Mondays require exposure estimates for Saturdays and Sundays. 

Many models use 3- to 5-day lags. With a 3-day lag, Sunday's through Wednesday's 

outcomes require weekend exposure data. Given lower performance of the dispersion model 

and greater uncertainty (as well as variability) of weekend time-activity information, 

exposure measurement errors may increase from Saturday through Wednesday. Thus, a 

study incorporating 3-day exposure lags might emphasize, weight or separately test the 

health data for Thursdays, Fridays and possibly Saturdays when exposure uncertainty is 

smaller to control for these effects. A related concern is RLINE's tendency to under-predict 

on weekdays, which could bias concentration-outcome relationships if the (estimated) 
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exposure variability is compressed, increase uncertainty since health models typically 

include both weekday and weekend periods, and falsely attribute variation to day-of-week or 

weekend/weekend covariates, if used. Such effects are hypothetical. Calibrating the 

dispersion model (i.e., mobile source inventory, TAFs) and the exposure assumptions might 

help to resolve this issue.

Lastly, seasonal variation in dispersion model performance, while less consistent than the 

day-of-week effects, raises additional concerns in epidemiologic applications. This variation 

can be coupled to seasonal time-activity information that affects exposure, e.g., the summer 

school holiday period for children, which can increase uncertainty since the home-school-

home pattern is absent or less consistent and because of increased time spent outdoors. In 

addition, July, August and sometimes early September traffic patterns can have greater 

variability, a result of summer vacation, holiday travel and decreased commuting.

4.3. Uncertainty and limitations

Comparisons between observed and predicted pollutant concentrations are affected by many 

factors. Our results show the importance of selecting pollutants, sites and instrumentation 

that together produce concentration trends that are markedly influenced by local traffic-

related emissions. The ability to discern traffic-related contributions of PM2.5 was limited, a 

result of high background concentrations, the lack of spatial and temporal detail for area, 

non-road and fugitive emissions, the omission of pollutant transformations in RLINE, and 

the sparseness of the monitoring network. The use of monitoring parameters more specific to 

TRAP, e.g., black carbon or ultrafine PM, would be valuable.

Modeling results can be affected by many factors. While detailed, the mobile source 

inventory used estimates of traffic volumes, time allocation factors derived from mostly 

larger roads, and MOVES emission factors for the greater Detroit area that may not have 

fully reflected local traffic volume, vehicle mix and emissions. Point sources were 

aggregated to the facility level, used average emission rates, and temporal variability was not 

modeled. Background estimates only partly accounted for regional sources and may not have 

fully represented short-term fluctuations and gradients. (Other studies have used complex 

regional chemical models to estimate background (Arunachalam et al., 2014).) The 

classification of downwind and parallel periods refers to only the nearest major road. We 

assumed that the meteorological datasets driving the model were representative and 

appropriate. Hours when measured concentrations were low (< DL) were omitted from the 

evaluation, which may artificially increase correlations by limiting analyses to those 

observations when local source impacts are seen. This was tested by setting values below the 

DL to ½ DL and repeating all analyses. This dampened some trends, e.g., the wind direction 

analysis of NOx, and RSP and other metrics changed noticeably. However, removing low 

values has the advantage of largely eliminating (meaningless) comparisons between 

modeled and measured background, which can be important if roadway impacts are small or 

if monitoring methods have low detection frequencies. Finally, the relatively few 

observations available on weekends may have influenced results.

Overall, results highlight the sensitivity of evaluation results to monitor placement, 

instrument sensitivity (e.g., DL), and the ability to observe contributions from local sources. 
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Results for NOx appear most meaningful given the NOx instrumentation's greater sensitivity 

and ability to detect traffic-related emissions. In contrast, the CO evaluation was limited by 

low detection frequencies at some sites, which resulted in a small number of valid 

observations, especially when analyses were stratified by wind direction, day-of-week and 

season.

5. Conclusions

An operation evaluation of dispersion model performance characterized the agreement 

between daily average predictions and observations of traffic-related air pollutants (TRAP) 

in an urban scale application in Detroit, Michigan that used a detailed link-based mobile 

source inventory and the RLINE model. Model performance was best for locations 

downwind of major roads, for winds perpendicular to roads, for sites near major roads, on 

weekdays, and during winter and spring seasons. Model performance was best for NOx and 

CO; the evaluation was not informative for PM2.5 mainly due to the scarcity of monitors 

near major roads and the presence of high background levels. These findings were consistent 

across most sites and for the two pollutants. Performance evaluations should test a wide 

range of environments, utilize sampling methods that are sufficiently sensitive and ideally 

selective for TRAP, and use an ensemble of evaluations to provide robust and representative 

results. Our results are consistent with the literature, and they demonstrate factors that affect 

model performance for the 24-h averages commonly used in epidemiologic studies.

RLINE's performance in near-road environments suggests its usefulness for estimating 

spatially- and temporally-resolved exposure estimates. However, the use of dispersion 

models in epidemiologic studies should address factors that can influence model 

performance and result in exposure measurement errors, including distance and direction 

from the road, day-of-week and seasonal effects. Appropriate study designs and analytical 

techniques can help avoid exposure measurement errors and improve the exposure estimates 

used in health and epidemiologic studies.
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Fig. 1. 
The modeling domain, including Michigan Department of Environmental Quality (MDEQ) 

monitoring stations, National Weather Service (NWS) meteorological stations, a subset of 

Michigan State Trunkline Highway System (i.e., ‘major’) and non-Trunkline (‘minor’) 

roads, all modeled roads, and large point sources of NOx in 2012 in Wayne County. Areas 

around the Urban, Near-road, Industrial, and Schools sites are shown (the Suburban site is 

below the modeled domain).

Milando and Batterman Page 19

Atmos Environ (1994). Author manuscript; available in PMC 2021 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Observed versus modeled NOx and CO at the near-road site using the EC9830T and 

IGpCHEM monitors. Figures show 1:1 and factor of 2 lines. For NOx and CO respectively, 

day-of-week and prevailing wind-direction comparisons are differentiated by point color and 

shape.
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Table 6

Summary of 2011 Wayne County CO, NOx and PM2.5 emissions from the National Emission Inventory (US 

Environmental Protection Agency (US EPA), 2014) in short tons (rounded to the nearest ton), percent of total 

emissions (bolded), and of each category (not bolded).

Emission category CO % NOx % PM2.5 %

Non-point 7,316 3 6,307 10 1,930 38

 Industrial processes 194 3 4 0 489 25

 Miscellaneous area sources < 1 0 7 0 27 1

 Mobile sources
a 107 1 872 14 689 36

 Natural sources 642 9 167 3 – –

 Stationary source fuel combustion 6,347 87 5,087 81 725 38

 Waste disposal, treatment and recovery 27 0 170 3 – –

Non-road mobile sources 65,491 27 6,847 11 493 10

On-road mobile sources 129,647 54 29,767 48 1,098 21

 Highway - Compressed Natural Gas 54 0 42 0 0 0

 Highway - Diesel 6,260 5 15,740 53 748 68

 Highway - Gasoline 123,332 95 13,985 47 349 32

Point 36,335 15 19,489 31 1,610 31

 External combustion 67 0 211 1 18 1

 External combustion boilers 7,422 20 10,516 54 246 15

 Industrial processes 20,230 56 3,082 16 904 56

 Internal combustion engines 3,193 9 1,363 7 260 16

 Mobile sources* 4,702 13 2,326 12 85 5

 Petroleum and solvent evaporation 13 0 20 0 52 3

 Waste disposal 708 2 1,972 10 46 3

 Grand Total 238,788 62,411 5,131

a
Railroad equipment and marine vessels

*
Aircraft and airport support vehicles.
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